

Instruction manual *RNA-direct*™ Realtime PCR Master Mix 2004

F0929K

# **RNA-direct™** Realtime PCR Master Mix

QRT-101 0.5 mL x 5 **Store at -20°C, protected from light** 

## **Contents**

- [1] Introduction
- [2] Components
- [3] Primer/Probe design
- [4] Detection
- [5] Specimens
- [6] Protocol
  - 1. TaqMan® assay protocol using ABI PRISM® 7900HT
  - 2. TaqMan® assay protocol using Roche LightCycler<sup>TM</sup>
- [7] Related protocol
  - 1. DNase I treatment of total RNA
- [8] Troubleshooting
- [9] Related products
- [10] References

## **CAUTION**

All reagents in this kit are intended for research purposes. Do not use for diagnosis or clinical purposes. Please observe general laboratory precaution and utilize safety while using this kit.

- -LightCycler  $^{TM}$  is a trademark of Idaho Technology, Inc. and Roche Molecular Systems, Inc.
- -TaqMan® is a registered trademark of Roche Molecular Systems, Inc.
- -ABI PRISM® is a registered trademark of the Perkin-Elmer Corporation.

## JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/bio/ tech\_osaka@toyobo.jp

#### **CHINA**

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp



## [1] Introduction

## **Description**

This product is a 2 × Master Mix for "1-step real-time PCR" using a thermostable DNA polymerase derived from Thermus thermophilus (Tth) HB81). Tth DNA polymerase exhibits reverse transcriptase activity in the presence of Mn<sup>2+</sup> ions. This system allows for "1-step real-time PCR", including reverse transcription and PCR steps. This reagent is applicable for TaqMan® assay or hybridization probe assay, in combination with each probe.

#### **Features**

- -This reagent is suitable for high-throughput real-time PCR and increases reliability of product, due to lowered risk of contamination.
- -This reagent can be used in systems using glass capillaries (e.g., LightCycler, Roche Molecular Systems, Inc.).
- -This reagent can be used in systems using passive reference (e.g., ABI PRISM® 7700, Applied Biosystems, Inc.). The passive reference dye does not affect any other systems.
- -Hot Start technology, using anti-Tth DNA polymerase antibodies, allows for high specificity and reproducible amplification.

This reagent includes the following components for 100 reactions, with a total of 50  $\mu$ L per

## [2] Components

reaction. All reagents should be stored at -20 °C.

<ORT-101>

RNA-direct<sup>TM</sup> Real-time PCR Master Mix 0.5 mL x 5 0.5 mL x 5 50 mM Mg(OAc)<sub>2</sub>

#### **Notes:**

This reagent can be stored at 4°C for up to 2 months, protected from light. For longer storage, this reagent should be kept at -20°C and protected from light.

# [3] Primer/Probe design

#### 1. Primer conditions

Primers should be designed according to the following guidelines:

-Primer length: 20~30 mer -GC content of primer: 40~60%

-Target length: ≤200 bp (optimally, 50~150 bp)

Longer targets (>200 bp) reduce efficiency and specificity of amplification. The ideal optimal target length range is 50~150 bp.

#### 2. Probe conditions

Probes should be designed in accordance to the guidelines for each assay system.

**JAPAN** 

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/bio/ tech osaka@toyobo.jp CHINA

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp



## [4] Detection

This reagent can be used with the following devices:

## 1. Normal devices, such as:

-LineGene, Bioer etc.

## 2. Devices using a glass capillary or a passive reference, such as:

- -LightCycler, Roche Molecular Systems
- -ABI PRISM® 7000, 7700, and 7900, Applied Biosystems

**Notes**: The passive reference mode of detectors should be set at "ROX".

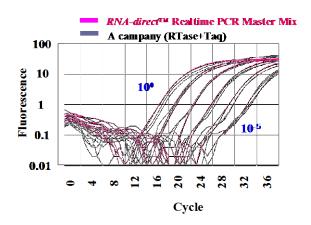



Fig. 1 Detection of β-actin expression by TaqMan® assay

Device: LineGene, Bioer Target: β-actin

Assay method: TaqMan® probe Template: cDNA from poly(A)<sup>+</sup> RNA (HeLa cell)

## [5] Specimen

The following RNAs are appropriate for highly efficient 1-step real-time PCR.

#### 1. Total RNA

Total RNA typically contains  $1\sim2\%$  mRNA, which can be used as template directly with this kit. RNA prepared by AGPC (Acid Guanidium-Phenol-Chloroform) or the column method contains genomic DNA; therefore, the total RNA should be treated with DNase I prior to transcription.

## 2. $Poly(A)^+ RNA (mRNA)$

 $Poly(A)^+$  RNA can be used to detect low-level expressing mRNA. However,  $poly(A)^+$  RNA should be treated carefully, because  $Poly(A)^+$  RNA is more sensitive to RNase than total RNA.

**JAPAN** 

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/bio/ tech\_osaka@toyobo.jp CHINA

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp



## [6] Protocol

## 1. TaqMan® assay protocol using ABI PRISM® 7900HT

The following is a TaqMan® assay protocol using ABI PRISM® 7900HT. If using other detection devices, this protocol should be slightly altered, according to each instruction manual.

## (1) Preparation of reaction solution

| Component                                  | Volume  | Final Concentration |
|--------------------------------------------|---------|---------------------|
| Nuclease-free water                        | 12.5 μL |                     |
| RNA-direct™ Realtime PCR Master Mix        | 25 μL   | 1x                  |
| 50 mM Mn(OAc) <sub>2</sub>                 | 2.5 μL  | 2.5 mM              |
| 10 pmol/μL (10 μM) Primer #1               | 1.5 μL  | 0.3 μΜ              |
| 10 pmol/μL (10 μM) Primer #2               | 1.5 μL  | 0.3 μΜ              |
| 5 pmol/μL (5 μM) TaqMan <sup>®</sup> probe | 2 μL    | 0.2 μΜ              |
| Template RNA                               | 5 μL    |                     |
| Total RNA                                  |         | <2.5 μg/50 μL       |
| $Poly(A)^+$ RNA                            |         | <500ng/50 μL        |
| Total volume                               | 50 μL   |                     |

#### **Notes:**

- -Primer and probe concentrations can be further optimized, if needed. The optimal ranges of primer and probe are  $0.2{\sim}0.6~\mu M$  and  $0.05{\sim}0.3\mu M$ , respectively. In the case of commercially available primers or probes, those recommended conditions should be used.
- -The final concentration of Mn(OAc)<sub>2</sub> should be adjusted to 2~3.5 mM. Lower Mn concentrations result in decreased non-specific amplification; higher Mn concentrations result in increased amplification efficiency.
- -Nuclease-free water prepared without DEPC-treatment is recommended.

## (2) Cycling conditions

The following is a cycling condition for the "standard mode" of ABI PRISM® 7900HT.

| <2-step cycle>    |                                 | _        |            |
|-------------------|---------------------------------|----------|------------|
| Denaturation:     | 90 °C, 30 sec.                  |          |            |
| RT:               | 61 °C, 20 min.                  |          |            |
| Pre-denaturation: | 95 °C, 1 min.                   |          |            |
| Denaturation:     | 95 °C, 15 sec.                  | <b>←</b> | 45 cycles  |
| Extension:        | 60 °C, 1 min. (data collection) |          | .5 0) 0105 |

#### Notes

-The PCR Master Mix contains anti-Tth DNA polymerase antibodies for Hot Start PCR. The first denaturation step (90°C, 30 sec.) is sufficient to inactivate the antibodies. Do not prolong this denaturation step.



## 2. TaqMan® assay protocol using Roche LightCycler<sup>TM</sup>

The following is a TaqMan<sup>®</sup> assay protocol using the Roche LightCycler<sup>TM</sup>. In the case of other detection devices, this protocol should be slightly altered accordingly.

#### (1) Preparation of reaction solution

| Component                                        | Volume      | Final<br>Concentration |
|--------------------------------------------------|-------------|------------------------|
| Nuclease-free water                              | 5 μL        |                        |
| RNA-direct <sup>™</sup> Real-time PCR Master Mix | 10 μL       | 1x                     |
| 50 mM Mn(OAc) <sub>2</sub>                       | 1 μL        | 2.5 mM                 |
| 10 pmol/μL (10 μM) Primer #1                     | 0.6 μL      | 0.3 μΜ                 |
| 10 pmol μL (10 μM) Primer #2                     | 0.6 μL      | 0.3 μΜ                 |
| 5 pmol/μL (5 μM) TaqMan <sup>®</sup> probe       | $0.8~\mu L$ | 0.2 μΜ                 |
| Template RNA                                     | $2 \mu L$   |                        |
| Total RNA                                        |             | $<1 \mu g/20\mu L$     |
| Poly(A) <sup>+</sup> RNA                         |             | <200 ng/20 μL          |
| Total volume                                     | 20 μL       |                        |

#### **Notes**

- -Primer and probe concentrations can be further optimized, if needed. The optimal ranges of primer and probe are 0.2~0.6  $\mu$ M and 0.05~0.3  $\mu$ M, respectively. In the case of commercially available primers or probes, those recommended conditions should be used.
- -The final concentration of Mn(OAc)<sub>2</sub> should be adjusted to 2~3.5 mM. Lower Mn concentrations result in decreased non-specific amplification; higher Mn concentrations result in increased amplification efficiency.
- -Nuclease-free water prepared without DEPC-treatment is recommended.

#### (2) Cycling conditions

The following conditions are recommended:

| <2-step cycle>    |                                  | _          |
|-------------------|----------------------------------|------------|
| Denaturation:     | 90 °C, 30 sec.                   | _          |
| RT:               | 61 °C, 20 min.                   |            |
| Pre-denaturation: | 95 °C, 30 sec.                   |            |
| Denaturation:     | 95 °C, 0 sec.                    | <b>←</b> ¬ |
| Extension:        | 60 °C, 45 sec. (data collection) | 45 cycles  |

#### Notes

- -The PCR Master Mix contains anti-Tth DNA polymerase antibodies for Hot Start PCR. The first denaturation step (90 °C, 30 sec.) is sufficient to inactivate the antibodies. Do not prolong this denaturation step.
- -The temperature transition rate can be set to 20 °C/sec. Pool amplification may be improved by changing the temperature transition rate to 2 °C/sec.

JAPAN
TOYOBO CO., LTD.
Tel(81)-6-6348-3888
www.toyobo.co.jp/bio/
tech osaka@toyobo.jp

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp



## [7] Related Protocol

#### 1. DNase I treatment of total RNA

Total RNA prepared by general methods contains genomic DNA. Genomic DNA can be eliminated by the following method:

(1) Combine the following reagents:

| Nuclease-free water                                                       | XμL    |
|---------------------------------------------------------------------------|--------|
| Total RNA (<10 μg)                                                        | Υ μL   |
| 10 x DNase I Buffer<br>[100 mM Tris-Cl, 20 mM MgCl <sub>2</sub> (pH 7.5)] | 1 μL   |
| RNase-free DNase I (10 U/μL)                                              | 0.5 μL |
| Total volume                                                              | 10 μL  |

- (2) Incubate on ice for 10-30 min.
- (3) Purify the treated RNA, according to the following steps:

#### **DNase I-treated RNA**

- ↓  $\leftarrow$  Add nuclease-free water (adjust volume to 100 µL)
- ↓ ← Add 100 μL TE-saturated phenol

#### Vortex

#### Incubate on ice for 5 min.

↓ Centrifuge at 12,000 rpm for 5 min.

## Collect supernatant

- ↓ ← Add 100 μL chloroform, vortex
- ↓ Centrifuge at 12,000 rpm for 5 min.

#### **Collect supernatant**

↓ ←Add 5 μL 20mg/mL glycogen\* (for co-precipitation) + 100 μL 5 M ammonium acetate + 200 μL isopropanol

## Incubate at - 20 °C for 30 min

↓ Centrifuge at 2,000 rpm for 5 min.

## **Discard supernatant**

#### Precipitate

- ↓ ←Add 1 mL 70% ethanol
- ↓ Centrifuge at 12,000 rpm for 5 min.

#### Discard supernatant

## Precipitate

↓ ←Dissolve in appropriate volume of nuclease-free water

## **RNA solution**

\*Molecular biology grade



## [8] Troubleshooting

| Symptom                    | Cause                                                        | Solution                                                                                        |
|----------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                            | Incorrect setting of detector mode for the fluorescence dye. | Confirm the detector setting.                                                                   |
|                            | Incorrect setting for data collection.                       | Confirm the data collection setting.                                                            |
|                            | Incorrect setting for sample position.                       | Reposition the sample tubes.                                                                    |
| No amplification           | Inappropriate concentration of primers or probes.            | Optimize primer or probe concentration according to instructions (see [6]).                     |
|                            | Inappropriate design of primers or probes.                   | Confirm specificity and Tm of primers and probes.                                               |
|                            | Inappropriate cycle conditions.                              | Confirm Tm of the primers and probes.                                                           |
|                            | Low purity or quality of samples                             | Check the purity or quality of sample DNA.                                                      |
|                            | Low concentration of Mn(OAc) <sub>2</sub> .                  | Increase the Mn concentration to 3.5 mM.                                                        |
|                            | Failure or malfunction of device                             | Check the device                                                                                |
| Variation in detection     | Low quality of sample DNA.                                   | Repurify DNA sample by phenol/chloroform extraction and ethanol precipitation, or other method. |
|                            | Inappropriate concentration of primers or probes.            | Optimize primer or probe concentration according to the instructions (see [6]).                 |
|                            | Inappropriate design of primers or probes.                   | Confirm specificity and Tm of primers and probes.                                               |
|                            | Inappropriate cycle conditions.                              | Confirm Tm of the primers and probes.                                                           |
|                            | Variation of dispensed volume                                | Increase the reaction volume                                                                    |
| Signals in blank reactions | Contamination of amplicons or sample DNAs.                   | Use fresh PCR grade water. Re-make primer solution, probe solution, and master mix.             |



## [9] Related products

| Product name                                                     | Package  | Code No. |
|------------------------------------------------------------------|----------|----------|
| High efficient cDNA synthesis kit for real-time PCR              | 200 rxns | FSQ-101  |
| ReverTra Ace <sup>TM</sup> qPCR RT Kit                           |          |          |
| High efficient revers transcriptaase                             | 10,000U  | TRT-101  |
| ReverTra Ace <sup>TM</sup>                                       |          |          |
| RNase inhibitor (Recombinant type)                               | 2,500U   | SIN-201  |
| Realtime PCR master mix for probe assay                          | 1mLx5    | QPK-101  |
| Realtime PCR Master Mix                                          |          |          |
| Realtime PCR master mix for SYBR® Green assay                    | 1mLx5    | QPK-201  |
| SYBR® Green Realtime PCR Master Mix                              |          |          |
| Realtime PCR master mix for SYBR® Green assay (improved version) | 1mLx5    | QPK-212  |
| SYBR® Green Realtime PCR Master Mix –Plus-                       |          |          |
| One-step realtime PCR master mix for SYBR® Green assay           | 0.5mLx5  | QRT-201  |
| RNA-direct™ SYBR® Green Realtime PCR Master Mix                  |          |          |

## [10] References

1) Myers T. W. and Gelfand D. H. ,  $\it Biochemistry, 30:7661-6 (1991)$