●TOYOBO ENZYMES● # (Diagnostic Reagent Grade) # p-HYDROXYBENZOATE HYDROXYLASE from Microorganism # PREPARATION and SPECIFICATION Appearance : Yellowish amorphous powder, lyophilized Activity : Grade ■ 20U/mg-solid or more (containing approx. 40% of stabilizers) Contaminant : NADPH oxidase ≤1.0 × 10⁻¹% Stabilizers : Sugars, FAD # PROPERTIES Stability : Stable at -20° C for at least one year (Fig.1) Molecular weight : 55,000~60,000 Michaelis constants : 2.0 × 10⁻⁵M (p-Hydroxybenzoate), 4.0 × 10⁻⁵M (NADPH) Structure : One mol of FAD per mol of enzyme Inhibitors : Ag+, Hg++, PCMB, SDS Optimum pH: 7.7-7.9(Fig.3)Optimum temperature: 35° C(Fig.4)pH Stability: pH 5.0-7.5 (25° C, 72hr)(Fig.5)Thermal stability: below 40° C (pH 6.0, 15min)(Fig.6) Substrate specificity : (Table 1) Effect of various chemicals : (Table 2) This enzyme is useful for enzymatic determination of choline esterase when coupled with protocatechuate 3, 4-dioxygenase (PCO-302). # Principle: p-Hydroxybenzoate+NADPH+H++O₂ p-hydroxybenzoate hydroxylase Protocatechuate+NADP++H₂O The disappearance of NADPH is measured at 340nm by spectrophotometry. #### **Unit definition:** One unit causes the oxidation of one micromole of NADPH per minute under the conditions described below. #### Method: ## Reagents A. Tris-malate buffer, pH 8.2 : 50mM [Dissolve 3.03g of Tris (M.W=121.14) in ca.300ml of H₂O and, after adjusting the pH to 8.2 at 25°C with 1.0M maleic acid, fill up to 500ml with H₂O.] B. p-hydroxybenzoate solution : 5.0mM [80mg p-hydroxybenzoate (Na salt)/100ml of buffer solution (A)] (Should be prepared fresh) C. FAD solution : $0.2 \text{mM} [19 \text{mg FAD} \cdot \text{Na}_2/100 \text{ml or buffer solution (A)}]$ (Should be prepared fresh) D. NADPH solution : 3.0mM [272mg NADPH · Na₄ · 4H₂O/100ml of buffer solution (A)] (Should be prepared fresh) E. Enzyme diluent : 50mM K-phosphate buffer, pH 6.0 containing 0.2% BSA #### Procedure 1. Prepare the following working solution (10 tests) in a brownish bottle and store on ice. | 21.0ml | Buffer solution | (A) | |--------|--------------------|-----| | 3.0ml | Substrate solution | (B) | | 3.0ml | FAD solution | (C) | | 3.0ml | NADPH solution | (D) | | Concentration in assay mixture | | | | | |--------------------------------|--------|--|--|--| | Tris-malate buffer | 49 mM | | | | | p-Hydroxybenzoate | 0.49mM | | | | | FAD | 20 μM | | | | | NADPH | 0.30mM | | | | - 2. Pipette 3.0ml of working solution into a cuvette (d=1.0cm) and equilibrate at 37℃ for about 5 minutes. - 3. Add 0.05ml of the enzyme solution* and mix by gentle inversion. - 4. Record the decrease in optical density at 340nm against water for 3 to 4 minutes in a spectrophotometer thermostated at 37°C and calculate the Δ OD per minute from 1.5 to 3 minutes portion of the curve (Δ OD test). At the same time, measure the blank rate (Δ OD blank) by using the same method as the test except that the enzyme diluent (E) is added instead of enzyme solution. * Dissolve the enzyme preparation in ice-cold enzyme diluent (E) (1.0mg/ml or more) and dilute to 0.2-0.6 U/ml with the same buffer, immediately before assay. ## Calculation Activity can be calculated by using the following formula: Volume activity (U/ml) = $\frac{\Delta \text{OD/min} (\Delta \text{OD test} - \Delta \text{OD blank}) \times \text{Vt} \times \text{df}}{6.22 \times 1.0 \times \text{Vs}} = \Delta \text{OD/min} \times 9.8 \times \text{df}$ Weight activity $(U/mg) = (U/mI) \times 1/C$ Vt : Total volume (3.05ml) Vs : Sample volume (0.05ml) 6.22 : Millimolar extinction coefficient of NADPH (cm/micromole) 1.0 : Light path length (cm) df : Dilution factor C : Enzyme concentration (c mg/ml) ## REFERENCES - 1) H.Shoun and K.Arima; Protein, Nucleic acid and Enzyme, 25, 820, (1980). - 2) K. Yano and K. Arima; Agric. Biol. Chem., 33, 689 (1969). - 3) K.Hosokawa and R.Y.Stanier; J.Biol.Chem., 241, 2453 (1966). Table 1. Substrate Specificity of p-Hydroxybenzoate hydroxylase | Substrate(0.5mM) | Relative activity(%) | Substrate(0.5mM) | Relative activity(%) | |--------------------------------|----------------------|--------------------------|----------------------| | p-Hydroxybenzoic acid | 100 | Protocatechuic acid | 3.3 | | Methyl-p-hydroxybenzoic acid | < 0.05 | β -Resorcylic acid | 4.5 | | Ethyl-p-hydroxybenzoic acid | < 0.05 | Gentisic acid | < 0.05 | | n-Propyl-p-hydroxybenzoic acid | < 0.05 | p-Chlorobenzoic acid | < 0.05 | | m-Hydroxybenzoic acid | < 0.05 | p-Aminobenzoic acid | 0.12 | | o-Hydroxybenzoic acid | | | | Table 2. Effect of Various Chemicals on p-Hydroxybenzoate hydroxylase (Residual activity after 1 hr-treatment at 30°C) | Chemical | Concn.(mM) | Residual
activity(%) | Chemical | Concn.(mM) | Residual
activity(%) | |-------------------|------------|-------------------------|---------------------------------|------------|-------------------------| | None | _ | 100 | MIA | 1.0 | 91 | | Metal salt | 1.0 | | PCMB | 1.0 | 3.7 | | CoCl ₂ | | 106 | NaN ₃ | 1.0 | 97 | | ZnCl ₂ | | 94 | NaF | 1.0 | 96 | | CuSO ₄ | | 103 | o-Phenanthroline | 1.0 | 95 | | AgNO ₃ | | 0 | α , α' -Dipyridyl | 1.0 | 90 | | MgSO ₄ | | 107 | EDTA | 5.0 | 96 | | BaCl ₂ | | 107 | Borate | 50 | 104 | | FeCl ₃ | | 106 | Tween 20 | 0.1% | 91 | | MnCl ₂ | | 90 | Brij 35 | 0.1% | 101 | | NiCl ₂ | | 104 | Span 20 | 0.1% | 94 | | CaCl ₂ | | 97 | Triton X-100 | 0.1% | 97 | | SnCl ₂ | | 102 | Na-cholate | 0.1% | 88 | | HgCl ₂ | | 1.1 | SDS | 0.05% | 34 | | CrCl ₂ | | 93 | | | | | CdCl ₂ | | 104 | | | | MIA, Monoiodoacetate; PCMB, p-Chloromercuribenzoate; EDTA, Ethylenediaminetetraacetate; SDS, Sodium dodecyl sulfate. 90 FeSO₄ Fig.1. Stability (Powder form) (kept under dry conditions) Fig.3. pH-Activity 37°C in 50mM buffer solution: ,K-phosphate; △—△,Trismalate Fig.5. pH-Stability 25℃ in 72hr-treatment with 50mM buffer solution:△—△,acetate; ○—○,K-phosphate;×——×,glycine-NaOH Fig.2. Stability (Liquid form at 25°C) [enzyme concentration:500U/ml buffer compostion:50mM K-phosphate buffer,pH6.0] Fig.4. Temperature activity (in 50mM Tris-malate buffer, pH8.2) Fig.6. Thermal stability [15min-treatment with 50mM K-phosphate buffer,pH6.0] # 活性測定法(Japanese) # 1.原理 p-Hydroxybenzoate+NADPH+H⁺+O₂ p-hydroxybenzoate hydroxylase Protocatechuate+NADP⁺ $+H_2O$ NADPHの消失量を340nmの吸光度の変化で測定する。 # 2.定義 下記条件下で1分間に1マイクロモルのNADPHが酸化される酵素量を1単位(U)とする。 # 3.試薬 - A. 50mM Tris-malate緩衝液pH8.2〔3.03gの Tris(MW=121.14)を約300mlの蒸留水で溶解 し,1.0M マレイン酸でpHを8.2(25℃)に調整後,蒸 留水で500mlにする〕 - B. 5.0mM p-ヒドロキシ安息香酸溶液 [80mgのp-ヒドロキシ安息香酸ナトリウムを100mlの緩衝液(A)で溶解する] (用時調製) - C. 0.2mM FAD溶液 [19mgのFAD・Na₂を約100mlの 緩衝液(A)で溶解する〕(用時調製) - D. 3.0mM NADPH溶液〔272mgのNADPH・Na₄-4H₂Oを約100mℓの緩衝液(A)で溶解する〕(用時調製) 酵素溶液:酵素標品を予め氷冷した0.2% BSAを含む 50mM K-リン酸緩衝液pH6.0で溶解(1.0mg /ml以上)し,分析直前に同緩衝液で0.2~ 0.6U/mlに希釈する。 # 4. 手順 ①下記反応混液を調製する(用時調製し,褐色瓶で氷冷 保存)。 21.0ml Tris-malate緩衝液 (A) 3.0ml 基質溶液 (B) 3.0ml FAD溶液 (C) 3.0ml NADPH溶液 (D) - ②反応混液3.0mlをキュベット(d=1.0cm)に採り,37°Cで約5分間予備加温する。 - ③酵素溶液0.05m ℓ を添加し, ℓ のるやかに混和後,水を対照に37°Cに制御された分光光度計で340nmの吸光度変化を1.5~3.0分間記録し,その1.5~3分間の吸光度変化を求める(Δ OD test)。 - ④盲検は反応混液に酵素溶液の代りに酵素希釈液 (0.2% BSAを含む50mM K-リン酸緩衝液pH6.0)を 0.05ml加え,上記同様に操作を行って,1分間当りの吸光度変化を求める(ΔOD blank)。 ### 5.計算式 U/m ℓ = $\frac{\Delta \text{OD/min} (\Delta \text{OD test} - \Delta \text{OD blank}) \times 3.05 (\text{m}\ell) \times$ 希釈倍率 6.22×1.0×0.05 (m ℓ) 6.22×1.0×0.05(N $=\Delta$ OD/minimes9.8imes希釈倍率 $U/mg = U/m\ell \times 1/C$ 6.22 : NADPHのミリモル分子吸光係数 (cm²/micromole) 1.0 : 光路長(cm) C : 溶解時の酵素濃度(c mg/ml)