

Instruction manual KOD Dash 2109

F0939K

KOD Dash

LDP-101 250 U 200 reactions

Store at -20°C

Contents

[1]	J	nt	rod	luci	tion

- [2] Components
- [3] Quality testing
- [4] Primer design
- [5] Cloning of PCR products
- [6] Protocol
 - 1. Standard reaction setup
 - 2. Cycling conditions
- [7] Examples
- [8] Troubleshooting
- [9] Related products
- [10] References

CAUSION

All reagents in this kit are intended for research purposes. Do not use for diagnosis or clinical purposes. Please observe general laboratory precaution and utilize safety while using this kit.

[1] Introduction

Description

KOD Dash is a highly efficient DNA polymerase mixture developed based on the Barns' method¹). This method uses a DNA polymerase which lacked a 3'→5' exonuclease (proofreading) activity and a small amount of an archaeal DNA polymerase with proofreading activity. In the reagent, the 3'→5' exonuclease activity-deficient mutant <KOD EXO(-)> of KOD DNA polymerase²) and KOD DNA polymerase are used. Because the proofreading activity repairs misincorporated nucleotide bases causing the termination of a polymerase reaction, PCR with this mixed enzyme solution enables highly efficient amplification.

KOD Dash generates dA overhang-ended PCR products. Therefore, the PCR products can be cloned using a standard TA cloning method.

Features

- -This enzyme mixture is effective for the amplification of various targets from a small template amount. The elongation ability of this enzyme mixture is much greater than that of the normal Taq DNA polymerase.
- -This enzyme mixture shows greater elongation velocity than Taq DNA polymerase (2 folds) and Pfu DNA polymerase (6 folds) due to the property of KOD DNA polymerase.
- -The PCR error ratio of this enzyme mixture is approximately 3 to 4 times less than that of Taq DNA polymerase.

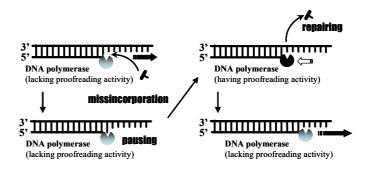


Fig. 1. The principles of the Barns' technology.

[2] Components

The provided reagents include the following components for 200 reactions:

KOD Dash (2.5 U/µl)	100 μl
10x PCR Buffer for KOD Dash*	1.2 ml
2 mM dNTPs	1.0 ml

^{*}The final Mg concentration in the reaction mixture is 1.2 mM.

JAPAN TOYOBO COLLID

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio bio overseas@toyobo.jp

[3] Quality Testing

A quality check was performed by amplifying the human β -globin gene (8.5 kb) and the lambda phase gene (12 kb).

[4] Primer Design

PCR primers should be designed according to general guidelines. For the amplification of a long target (\geq 4 kb), the melting temperature (Tm) of the primers should be set over 72 °C.

I 5 1 Cloning of PCR products

The PCR products obtained with amplification by KOD Dash can be cloned according to a standard TA-cloning method.

[6] Protocol

1. Standard reaction setup

The following procedures have been designed for use with the components provided in this kit. Before preparing the reaction mixture, all components should be completely thawed, except for the enzyme solution.

*10x Buffer may precipitate. If precipitation occurs, dissolve it completely by overturning and mixing before use. The precipitate on the bottom of the tube can be easily dissolved by tapping it and then mixing it with the solution. If the precipitate is difficult to dissolve, repeat both heating the reagent at 50°C for 5 min and mixing it. Before preparing the reaction solution, mix each reagent thoroughly before use.

Component	Volume	Final Concentration	
10x Buffer for KOD Dash	5 μl	1x	
2 mM dNTPs*	5 μl	0.2 mM each	
10 pmol/μl Primer #1	1 μl	0.2 μΜ	
10 pmol/μl Primer #2	1 μl	0.2 μΜ	
Template DNA	Х μΙ	Genomic DNA 10-1000 ng/50 μl Plasmid DNA 1-50 ng/50 μl cDNA ≤1 μg (RNA equiv.)/50 μl E. coli cells (small amount)	
PCR grade water	Yμl		
KOD Dash (2.5 U/μl)	0.5 μl	1.25 U / 50 μl	
Total reaction volume	50 μl		

^{*} Do not use dNTPs from other kits or companies.

Notes:

- -Thin-wall tubes are recommended for PCR use. A total reaction volume of 50 μl is recommended.
- -For amplification of a long target (\geq 8 kb), the use of a final concentration of 0.35 mM dNTPs may reduce non-specific amplification.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888

Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio bio overseas@toyobo.jp **CHINA**

TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

2. Cycling conditions

The following cycling steps are recommended.

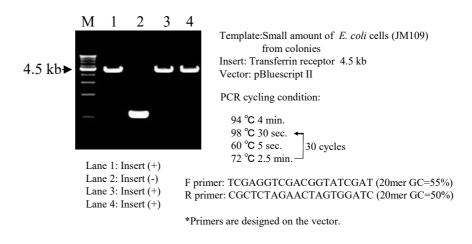
(1) Cycling conditions for < 4kb targets.

< 3-step cycle >			
Pre-denaturation	94 °C, 0-2 min		
Denaturation	94 °C, 30 sec.	←	
Annealing	Tm-[0-5] °C*, 1-5 sec.		25-35 cycles
Extension	74 °C, 30 sec./kb		

^{*}Tm value of the primer minus 0°C-5°C

(2) Cycling conditions for \geq 4kb products.

< 2-step cycle >			
Pre-denaturation	94 °C, 0-2 min		
Denaturation	94 °C, 30 sec.	←	25.25
Extension	68-70 °C, 30 sec./kb		25-35 cycles


Note: If the Tm value of the primer is under 70 °C, the 3-step cycle is recommended.

Notes:

- -Extension time should be set at 30 sec. per 1 kb of target length.
- -For colony-direct PCR, the pre-denaturation step should be set for 4 min.

[7] Examples

Example 1. Colony-direct PCR using *E. coli* cells.

JAPAN
TOYOBO CO., LTD.
Tel(81)-6-6348-3888
www.toyobo.co.jp/e/bio
bio overseas@toyobo.jp

CHINA

TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

[8] Troubleshooting

Symptoms	Cause	Solutions	
	Cycling conditions are not optimal	Lower annealing temperature increments to a maximum of Tm-10 °C.	
	optimar	Increase the number of cycles by 2-5 cycles.	
No PCR product / low yield	Primers are not good	Check the design and/or quality of primers.	
	Too much <i>E. coli</i> cells (Colony direct PCR)	Decrease the amount of <i>E. coli</i> cells from colonies.	
Smearing / extra band(s)	Cycling conditions are not optimal	Decrease the number of cycles by 2-5 cycles.	

I 9 1 Related products

Product name	Package	Code No.
Highly efficient cDNA synthesis kit	100 rxns	FSK-101
ReverTra Ace® -α-		
Highly efficient reverse transcriptase	10,000 U	TRT-101
ReverTra Ace®		
RNase inhibitor (Recombinant type)	2,500 U	SIN-201
Highly efficient Taq DNA polymerase	250 U	BTQ-101
Blend Taq®		
Highly efficient Taq DNA polymerase (Hot start version)	250 U	BTQ-201
Blend Taq® -Plus-		
High fidelity PCR enzyme	200 U	KOD-201
KOD -Plus-		
Highly reliable PCR enzyme	200 U	KFX-101
KOD FX		

[10] References

- 1) Barns WM, Proc. Natl. Acad. Sci. USA, 91: 2216-2220 (1994)
- 2) Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, and Imanaka T, *Appl Environ Microbiol.*, 63: 4504-10 (1997)