

Instruction manual *RNA-direct*™ SYBR[®] Green Realtime PCR Master Mix 2004

F0930K

RNA-direct™ SYBR® Green Realtime PCR Master Mix

QRT-201 0.5

0.5mLx5

Store at -20°C, protected from light

Contents

- [1] Introduction
- [2] Components
- [3] Primer design
- [4] Detection
- [5] Specimens
- [6] Protocol
 - 1. Intercalation assay protocol using ABI PRISM® 7900HT
 - 2. Intercalation assay protocol using Roche LightCyclerTM
- [7] Related protocol
 - 1. DNase I treatment of total RNA
- [8] Trouble shooting
- [9] Related products
- [10] References

CAUTION

All reagents in this kit are intended for research purposes. Do not use for diagnosis or clinical purposes. Please observe general laboratory precaution and utilize safety while using this kit.

- -LightCycler™ is a trademark of Idaho Technology, Inc. and Roche Molecular Systems, Inc.
- -SYBR® is a registered trademark of Molecular Probes, Inc.
- -ABI PRISM® is a registered trademark of Perkin-Elmer Corporation.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/bio/ tech_osaka@toyobo.jp **CHINA**

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp

[1] Introduction

Description

This product is a $2 \times Master Mix$ for "1-step real-time PCR" using a thermostable DNA polymerase derived from *Thermus thermophilus* (Tth) HB8¹¹. Tth DNA polymerase exhibits reverse transcriptase activity in the presence of Mn²+ ions. This system allows for "1-step real-time PCR", including reverse transcription and PCR steps. This reagent can be applied to an intercalation assay with SYBR® Green I.

Features

- -This reagent is suitable for high-throughput real-time PCR and increases reliability of product, due to lowered risk of contamination.
- -This reagent can be used in systems using glass capillaries (e.g., LightCycler, Roche Molecular Systems, Inc.).
- -This reagent can be used in systems using passive reference (e.g., ABI PRISM® 7700, Applied Biosystems, Inc.). The passive reference dye does not affect any other systems.
- -Hot Start technology, using anti-Tth DNA polymerase antibodies, allows for high specificity and reproducible amplification.

[2] Components

This reagent includes the following components for 100 reactions, with a total of 50 μ L per reaction. All reagents should be stored at -20 °C.

<ORT-201>

RNA-direct™ SYBR® Green Realtime PCR Master Mix 0.5mLx5 50mM Mg(OAc)₂ 0.5mLx5

Notes:

This reagent can be stored at 4°C for up to 2 months, protected from light. For longer storage, this reagent should be kept at -20°C and protected from light.

[3] Primer

1. Primer conditions

Primers should be designed according to the following guidelines:

-Primer length: 20~30 mer -GC content of primer: 40~60%

-Target length: \leq 200 bp (optimally, 50~150 bp)

Notes:

Longer targets (>200 bp) reduce efficiency and specificity of amplification. The ideal optimal target length range is 50~150 bp.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/bio/ tech_osaka@toyobo.jp **CHINA**

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp

[4] Detection

This reagent can be used with the following devices:

1. Normal devices, such as:

-LineGene, Bioer etc.

2. Devices using a glass capillary or a passive reference, such as:

- -LightCycler, Roche Molecular Systems
- -ABI PRISM® 7000, 7700, and 7900, Applied Biosystems

Notes: The passive reference mode of detectors should be set at "ROX".

Fig. 1 Detection of β-actin expression with TaqMan® assay

Device: ABI PRISM® 7900HT Target: β-actin

Assay method: TaqMan® probe Template: cDNA from poly(A)⁺ RNA (HeLa cells)

[5] Specimen

The following RNAs are appropriate for highly efficient 1-step real-time PCR.

1. Total RNA

Total RNA typically contains 1~2% mRNA, which can be used as template directly with this kit. RNA prepared by AGPC (Acid Guanidium-Phenol-Chloroform) or the column method contains genomic DNA; therefore, the total RNA should be treated with DNase I prior to transcription.

2. Poly(A)+ RNA (mRNA)

 $Poly(A)^+$ RNA can be used to detect low-level expressing mRNA. However, $poly(A)^+$ RNA should be treated carefully, because $Poly(A)^+$ RNA is more sensitive to RNase than total RNA.

[6] Protocol

1. Intercalation assay protocol using ABI PRISM® 7900HT

The following is an intercalation assay protocol using ABI PRISM® 7900HT. If using other detection devices, this protocol should be slightly altered, according to each instruction manual.

(1) Preparation of reaction solution

Component	Volume	Final
Component	volume	Concentration
Nuclease-free water	15.5 μL	
RNA-direct TM SYBR® Green Realtime PCR Master Mix	25 μL	1x
50mM Mn(OAc) ₂	2.5 μL	2.5 mM
10 pmol /μL (10 μM) Primer #1	1.0 μL	0.2 μΜ
10 pmol /μL (10 μM) Primer #2	1.0 μL	0.2 μΜ
Template RNA	5 μL	
Total RNA		$<$ 2.5 μg / 50 μL
Poly (A) ⁺ RNA		$<$ 500 ng / 50 μ L
Total volume	50 μL	

Notes

- -Primer concentrations can be further optimized, if needed. The optimal range of primers is $0.2{\sim}0.6~\mu M$. In the case of commercially available primers, those recommended condition should be used.
- -The final concentration of Mn(OAc)₂ should be adjusted to 2~3.5 mM. Lower Mn concentrations result in decreased non-specific amplification; higher Mn concentrations result in increased amplification efficiency.
- -Nuclease-free water prepared without DEPC-treatment is recommended.

(2) Cycling condition

The following is a cycling condition the "standard mode" of ABI PRISM® 7900HT.

<3-step cycle>		_	
Denaturation:	90 °C, 30 sec.	_	
RT:	61 °C, 20 min.		
Pre-denaturation:	95 °C, 1 min.		
Denaturation:	95 °C, 15 sec.	← ⊤	
Annealing:	55-65 °C, 15 sec.		45 cycles
Extension:	74 °C, 45 sec. (data collection)		•
Melting curve anal	ysis	_	

Notes

- -The PCR Master Mix contains anti-Tth DNA polymerase antibodies for Hot Start PCR. The first denaturation step (90 °C, 30 sec.) is sufficient to inactivate the antibodies. Do not prolong this denaturation step.
- -The annealing temperature should to Tm-5 °C. The optimal annealing temperature range is 55-65°C.

tech osaka@toyobo.jp

2. Intercalation assay protocol using Roche LightCyclerTM

The following is an intercalation assay protocol using Roche LightCycler $^{\text{\tiny M}}$. In the case of other detection devices, this protocol should be slightly altered, according to each instruction manual.

(1) Preparation of reaction solution

Component	Volume	Final Concentration
Nuclease-free water	6.2 μL	
RNA-direct™ SYBR® Green Realtime PCR Master Mix	10 μL	1x
50 mM Mn(OAc) ₂	1 μL	2.5 mM
10 pmol /μL (10 μM) Primer #1	0.4 μL	0.2 μΜ
10 pmol /μL (10 μM) Primer #2	0.4 μL	0.2 μΜ
Template RNA	$2~\mu L$	
Total RNA		$<1~\mu$ g $/~20~\mu$ L
Poly(A) ⁺ RNA		$<$ 200 ng / 20 μ L
Total volume	20 μL	

Notes

- -The primer concentration can be further optimized, if needed. The optimal range of primers is $0.2{\sim}0.6~\mu\text{M}$. In the case of commercially available primers, those recommended conditions should be used.
- -The final concentration of Mn(OAc)₂ should be adjust to 2~3.5 mM. Lower Mn concentrations result in decreased non-specific amplification; higher Mn concentrations result in increased the amplification efficiency.
- -Nuclease-free water prepared without DEPC-treatment is recommended.

(2) Cycling condition

The following condition is recommended.

<2-step cycle>		_
Denaturation:	90 °C, 30 sec.	
RT:	61 °C, 20 min.	
Pre-denaturation:	95 °C, 30 sec.	
Denaturation:	95 °C, 5 sec.	← 1
Annealing:	55~65 °C, 10 sec.	45 cycles
Extension:	74 °C, 15 sec. (data collection)	

Notes

- -The PCR Master Mix contains anti-Tth DNA polymerase antibodies for Hot Start PCR. The first denaturation step (90°C, 30 sec.) is sufficient to inactivate the antibodies. Do not prolong this denaturation step.
- -The temperature transition rate should be set to 20 °C/sec. Pool amplification may be improved by adjusting the temperature transition rate to 2 °C/sec.
- -If the target length is \leq 200 bp, the extension time should be adjusted to 15 sec. Data collection steps should be at least 15 sec.

CHINA

[7] Related Protocol

1. DNase I treatment of total RNA

Total RNA prepared by general methods contains genomic DNA. Genomic DNA can be eliminated by the following method.

(1) Mix the following reagents.

Nuclease-free water	XμL
Total RNA (<10 μg)	Υ μL
10 x DNase I Buffer [100 mM Tris-Cl, 20 mM MgCl ₂ (pH 7.5)]	1 μL
RNase-free DNase I (10 U/μL)	0.5 μL
Total volume	10 μL

- (2) Incubate on ice for 10~30 min.
- (3) Purify the treated RNA according to the following step.

DNase I-treated RNA

- ↓ \leftarrow Add nuclease-free water (adjust volume to 100 µL)
- ↓ ← Add 100 μL TE-saturated phenol

Vortex

Keep on ice for 5 min.

↓ Centrifuge at 12,000 rpm for 5 min.

Supernatant

- ↓ ← Add 100 μL chloroform, Voltex
- ↓ Centrifuge at 12,000 rpm for 5 min.

Supernatant

↓ ←Add 5 μL 20mg/mL glycogen* (for coprecipitation) +100 μL 5 M ammonium acetate + 200 μL isopropanol

Incubate at - 20 °C for 30 min.

↓ Centrifuge at 2,000 rpm for 5 min.

Discard supernatant

Precipitate

- ↓ ←Add 1 mL 70% ethanol
- ↓ Centrifuge at 12,000 rpm for 5 min.

Discard supernatant

Precipitate

↓ ←Dissolve in appropriate volume of nuclease-free water

RNA solution

*Molecular biology grade

JAPAN
TOYOBO CO., LTD.
Tel(81)-6-6348-3888
www.toyobo.co.jp/bio/
tech osaka@toyobo.jp

CHINA

TOYOBO (SHANGHAI) BIOTECH, CO., LTD. Tel (+86)-21-58794900 www.bio-toyobo.co.jp

[8] Troubleshooting

Symptom	Cause	Solution
	Incorrect setting of detector mode for the fluorescence dye.	Confirm the detector setting.
	Incorrect setting for data collection.	Confirm the data collection setting.
	Incorrect setting for sample position.	Reposition the sample tubes.
No amplification	Inappropriate concentration of primers or probes.	Optimize primer or probe concentration according to instructions (see [6]).
	Inappropriate design of primers or probes.	Confirm specificity and Tm of primers and probes.
	Inappropriate cycle conditions.	Confirm Tm of the primers and probes.
	Low purity or quality of samples	Check the purity or quality of sample DNA.
	Low concentration of Mn(OAc) ₂ .	Increase the Mn concentration to 3.5 mM.
	Failure or malfunction of device	Check the device
Variation in detection	Low quality of sample DNA.	Repurify DNA sample by phenol/chloroform extraction and ethanol precipitation, or other method.
	Inappropriate concentration of primers or probes.	Optimize primer or probe concentration according to the instructions (see [6]).
	Inappropriate design of primers or probes.	Confirm specificity and Tm of primers and probes.
	Inappropriate cycle conditions.	Confirm Tm of the primers and probes.
	Variation of dispensed volume	Increase the reaction volume
Signals in blank reactions	Contamination of amplicons or sample DNAs.	Use fresh PCR grade water. Re-make primer solution, probe solution, and master mix.
	Detection of a non-specific amplification.	Optimize the primer and cycle conditions.

[9] Related products

Product name	Package	Code No.
High efficient cDNA synthesis kit for real-time PCR	200 rxns	FSQ-101
ReverTra Ace TM qPCR RT Kit		
High efficient revers transcriptaase	10,000U	TRT-101
ReverTra Ace TM		
RNase inhibitor (Recombinant type)	2,500U	SIN-201
Realtime PCR master mix for probe assay	1mLx5	QPK-101
Realtime PCR Master Mix		
Realtime PCR master mix for SYBR® Green assay	1mLx5	QPK-201
SYBR® Green Realtime PCR Master Mix		
Realtime PCR master mix for SYBR® Green assay (improved version)	1mLx5	QPK-212
SYBR® Green Realtime PCR Master Mix –Plus-		
One-step realtime PCR master mix for probe assay	0.5mLx5	QRT-101
RNA-direct™ Realtime PCR Master Mix		

[10] References

1) Myers T. W. and Gelfand D. H. , $\it Biochemistry, 30:7661-6 (1991)$